
Si8823EDB

Vishay Siliconix

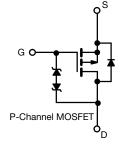
www.vishay.com

P-Channel 20 V (D-S) MOSFET

MICRO FOOT[®] 0.8 x 0.8 _S

Backside View

Bump Side View


PRODUCT SUMMARY					
V _{DS} (V)	-20				
$R_{DS(on)}$ max. (Ω) at V_{GS} = -4.5 V	0.095				
$R_{DS(on)}$ max. (Ω) at V_{GS} = -2.5 V	0.120				
$R_{DS(on)}$ max. (Ω) at V_{GS} = -1.8 V	0.200				
$R_{DS(on)}$ max. (Ω) at V_{GS} = -1.5 V	0.335				
Q _g typ. (nC)	6.6				
I _D (A)	-2.7 ^a				
Configuration	Single				

FEATURES

- TrenchFET[®] Gen III p-channel power MOSFET
- · Compact 0.8 mm x 0.8 mm outline area
- Low 0.4 mm max. profile
- R_{DS(on)} rating at V_{GS} = -1.5 V
- Typical ESD protection: 1900 V HBM
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Load switch
- · Power management in batteryoperated, mobile, and wearable devices

ORDERING INFORMATION

Package	MICRO FOOT
Lead (Pb)-free and halogen-free	Si8823EDB-T2-E1

PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-source voltage		V _{DS}	-20	V	
Gate-source voltage		V _{GS}	± 8	V	
Continuous drain current (T _J = 150 °C)	T _A = 25 °C		-2.7 ^a		
	T _A = 70 °C		-2.1 ^a		
	T _A = 25 °C	I _D	-1.9 ^b		
	T _A = 70 °C		-1.5 ^b	А	
Pulsed drain current (t = 100 μs)		I _{DM}	-15		
Continuous source-drain diode current	T _A = 25 °C		-0.7 ^a		
	T _A = 70 °C	I _S	-0.4 ^b		
Maximum power dissipation	T _A = 25 °C		0.9 ^a		
	T _A = 70 °C	- P _D	0.6 ^a	w	
	T _A = 25 °C		0.5 ^b	vv	
	T _A = 70 °C		0.3 ^b		
Operating junction and storage temperature range		T _J , T _{stg}	-55 to +150		
Package reflow conditions ^c		VPR IR / convection	260	°C	

THERMAL RESISTANCE BATINGS

PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT	
Maximum junction-to-ambient a, f	+ 50	t = 5 s R _{thJA}	105	135	°C/W	
Maximum junction-to-ambient ^{b, g}	1=55		200	260		

Notes

a.

b.

c.

Surface mounted on 1" x 1" FR4 board with full copper, t = 5 s. Surface mounted on 1" x 1" FR4 board with minimum copper, t = 5 s. Refer to IPC / JEDEC[®] (J-STD-020), no manual or hand soldering. In this document, any reference to case represents the body of the MICRO FOOT device and foot is the bump. d.

Based on T_A = 25 °C e.

f. Maximum under steady state conditions is 185 °C/W.

Maximum under steady state conditions is 330 °C/W. g.

S16-1562-Rev. A, 08-Aug-16

1

Document Number: 76852

RoHS COMPLIANT HALOGEN FREE

www.vishay.com

Si8823EDB

Vishay Siliconix

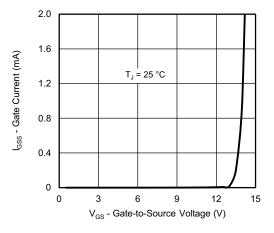
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static					1	1	
Drain-source breakdown voltage	V _{DS}	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	-20	-	-	V	
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	L 050 A	-	-12.5	-	mV/°C	
V _{GS(th)} temperature coefficient	$\Delta V_{GS(th)}/T_J$	I _D = -250 μA	-	2.3	-		
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	-0.4	-	-0.8	V	
Gate-source leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 4.5 V$	-	-	± 0.5		
		$V_{DS} = 0 V$, $V_{GS} = \pm 8 V$	-	-	± 5	5	
Zene ande velkene due'e evunent		$V_{DS} = -20 V, V_{GS} = 0 V$	-	-	-1	— μA —	
Zero gate voltage drain current	IDSS	V_{DS} = -20 V, V_{GS} = 0 V, T_{J} = 55 °C	-	-	-10		
On-state drain current ^a	I _{D(on)}	$V_{DS} \geq$ -5 V, V_{GS} = -4.5 V	-5	-	-	А	
Drain-source on-state resistance ^a		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -1 \text{ A}$	-	0.077	0.095		
		$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -1 \text{ A}$	-	0.100	0.120	Ω	
	R _{DS(on)}	$V_{GS} = -1.8 \text{ V}, \text{ I}_{D} = -0.5 \text{ A}$	-	0.137	0.185		
		$V_{GS} = -1.5 \text{ V}, \text{ I}_{D} = -0.5 \text{ A}$	-	0.200	0.335		
Forward transconductance ^a	9 _{fs}	$V_{DS} = -5 V, I_D = -1 A$	-	6	-	S	
Dynamic ^b	· · · · · ·						
Input capacitance	C _{iss}	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz	-	580	-	pF	
Output capacitance	C _{oss}		-	165	-		
Reverse transfer capacitance	C _{rss}		-	75	-		
Total gata abarga	0	V_{DS} = -10 V, V_{GS} = -8 V, I_D = -1 A	-	11	17	- nC	
Total gate charge	Qg	V_{DS} = -10 V, V_{GS} = -4.5 V, I_{D} = -1 A	-	6.6	10		
Gate-source charge	Q _{gs}	V _{DS} = -10 V, V _{GS} = -4.5 V, I _D = -1 A	-	1	-		
Gate-drain charge	Q _{gd}	$v_{\rm DS} = -10 v, v_{\rm GS} = -4.3 v, {\rm ID} = -1 {\rm A}$	-	1.5	-		
Gate resistance	R _g	f = 1 MHz	-	20	-	Ω	
Turn-on delay time	t _{d(on)}		-	16	30	- ns	
Rise time	t _r	V_{DD} = -10 V, R_L = 10 Ω , $I_D \cong$ -1 A,	-	30	60		
Turn-off delay time	t _{d(off)}	$V_{\text{GEN}} = -4.5 \text{ V}, \text{ R}_{\text{g}} = 1 \Omega$	-	60	120		
Fall time	t _f		-	40	80		
Turn-on delay time	t _{d(on)}		-	7	15		
Rise time	t _r	$V_{DD} = -10 \text{ V}, \text{ R}_{L} = 10 \Omega, \text{ I}_{D} \cong -1 \text{ A},$	-	20	40		
Turn-off delay time	t _{d(off)}	V_{GEN} = -8 V, R_g = 1 Ω	-	75	150		
Fall time	t _f		-	35	70		
Drain-Source Body Diode Characteristi	cs						
Continuous source-drain diode current	I _S	T _A = 25 °C -		-	-0.7	A	
Pulse diode forward current	I _{SM}		-	-	-15		
Body diode voltage	V _{SD}	$I_{S} = -1 \text{ A}, V_{GS} = 0 \text{ V}$	-	-0.8	-1.2	V	
Body diode reverse recovery time	t _{rr}		-	20	40	ns	
Body diode reverse recovery charge	Q _{rr}		-	7	15	nC	
Reverse recovery fall time	t _a	I _F = -1 A, dl/dt = 100 A/µs, T _J = 25 °C	-	12.5	-	-	
Reverse recovery rise time	t _b		-	7.5	-	ns	

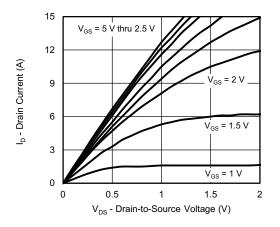
Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

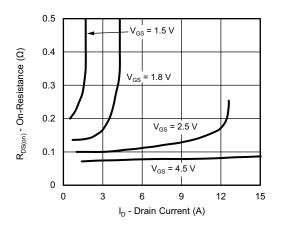
b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

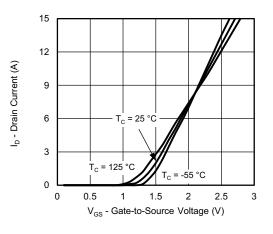

2

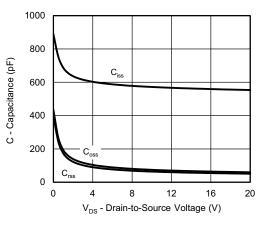

Si8823EDB

Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Gate-Current vs. Gate-Source Voltage


Output Characteristics


On-Resistance vs. Drain Current and Gate Voltage

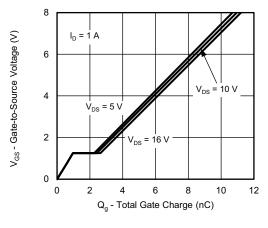
Gate-Current vs. Gate-Source Voltage

Transfer Characteristics

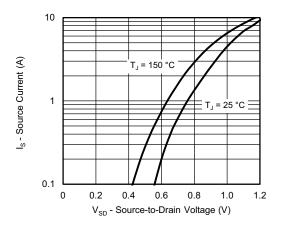
Capacitance

S16-1562-Rev. A, 08-Aug-16

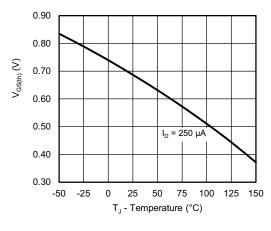
3

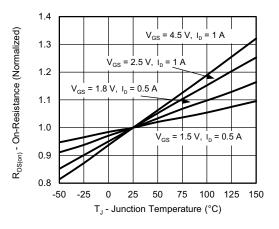

Document Number: 76852

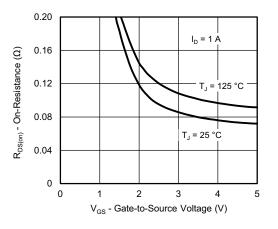
For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

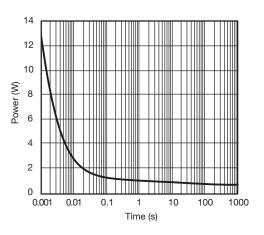


Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Gate Charge


Source-Drain Diode Forward Voltage


Threshold Voltage

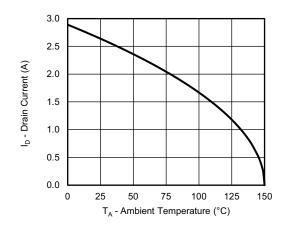
On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

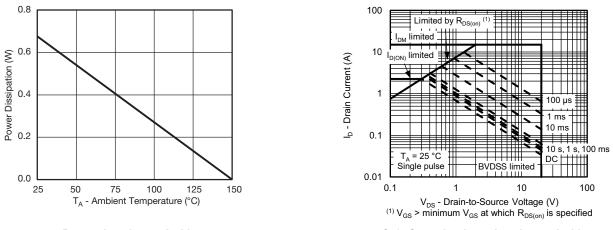
Single Pulse Power, Junction-to-Ambient

S16-1562-Rev. A, 08-Aug-16

4


Document Number: 76852

For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

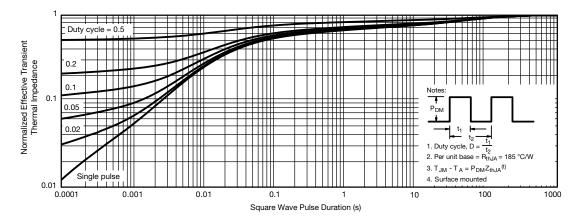
Current Derating a

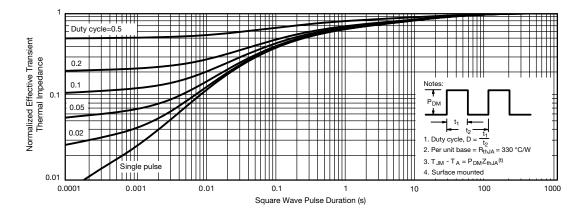
Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

Note

a. The power dissipation P_D is based on T_J max. = 25 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.


5


Si8823EDB

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient (on 1" x 1" FR4 board with maximum copper)

Normalized Thermal Transient Impedance, Junction-to-Ambient (on 1" x 1" FR4 board with minimum copper)

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?76852.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.